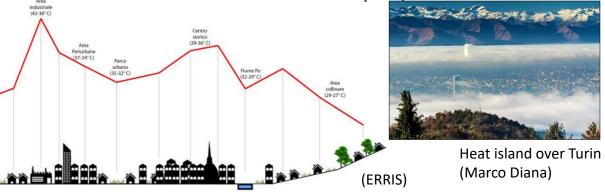


7th AIGE/IIETA International Conference 16th AIGE 2022 Conference Parma, June 8th – 9th, 2022


GEOSPATIAL ASSESSMENT AND MODELING OF OUTDOOR THERMAL COMFORT AT URBAN SCALE

Guglielmina Mutani¹ and Simone Beltramino²

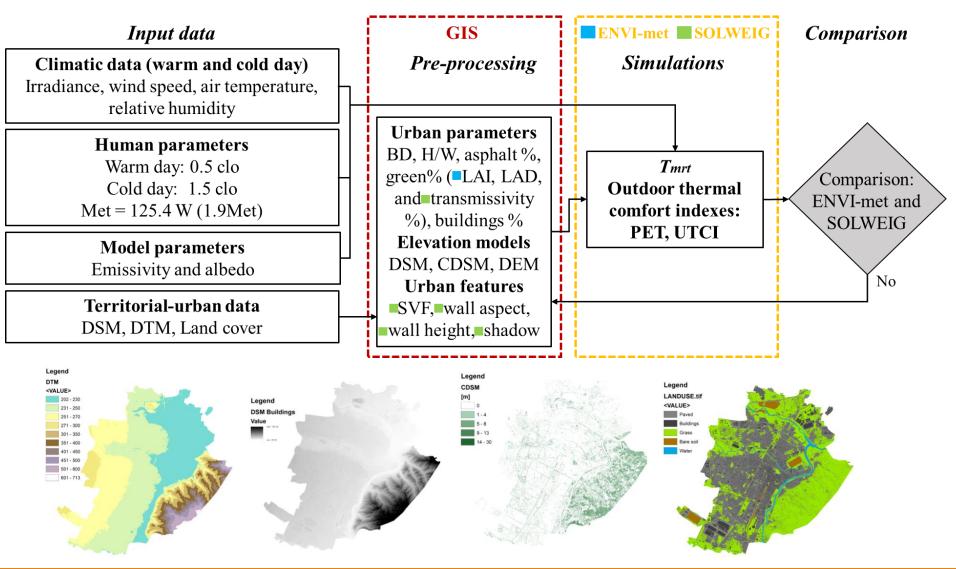
 ¹Responsible Risk Resilience Centre – R3C, Department of Energy, Politecnico di Torino. Turin, Italy
²Responsible Risk Resilience Centre – R3C, Interuniversity Department of Regional and Urban Studies and Planning, Politecnico di Torino. Turin, Italy

Research background and objectives

Climate changes and **urban population growth** are increasing the **heat island effect** in cities causing environmental impacts and making the urban outdoor environment less comfortable for people.

Urban spaces are a limited and precious resource that must be exploited to the fullest.

GOAL OF WORK: provide an overview of the current **tools to evaluate local climate conditions** in cities, helping to define the most appropriate type of tool.

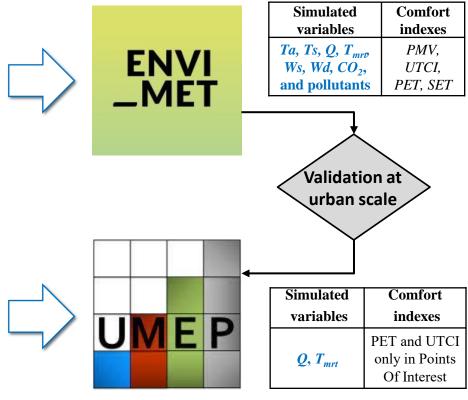

CASE STUDY: two

neighborhoods with different urban morphologies located in the **city of Turin** (Italy).

OBJECT OF WORK: the results of this work provide **urban thermal comfort maps** and **graphs** to support urban planners, useful to implement guidelines for checking and improving the livability of outdoor spaces.

REF: "How to Improve the Liveability in Cities: The Effect of Urban Morphology and Greening on Outdoor Thermal Comfort" G. Mutani, V. Todeschi, S. Beltramino. TECNICA ITALIANA-Italian Journal of Engineering Science. Vol. 65, No. 2-4, July, 2021, pp. 361-370

Methodology

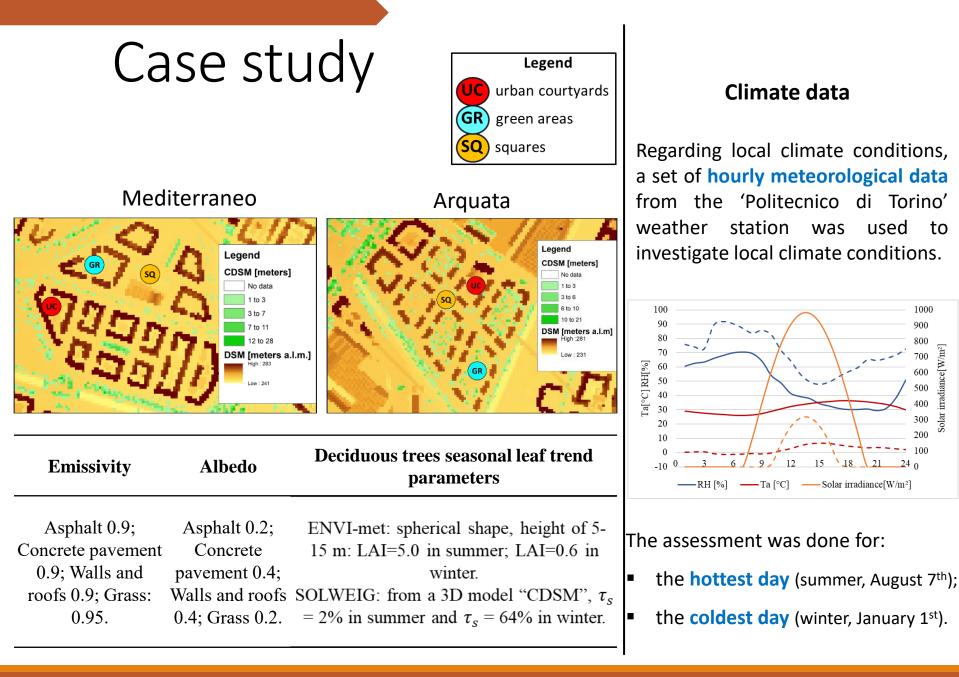


Thermal comfort tools for outdoor spaces

The tools used to evaluate thermal comfort conditions can be classified based on the **spatial scale** analyzed:

□ Local scale tools use very accurate, complex, and time-consuming models are useful for advanced feasibility studies, and for the design phase of blocks of buildings and little neighborhoods.

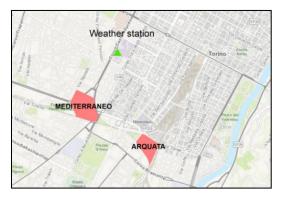
□ Urban scale tools are less common in literature and most of them are based on GIS (Geographic Information Systems) tools. They are based on more simplified models for the calculation of thermal comfort variables, returning lower accuracy results, but the possibility to consider a larger urban area with faster simulation times.


SOLWEIG

REF: "Improving Outdoor Thermal Comfort in Built Environment Assessing the Impact of Urban Form and Vegetation". "G. Mutani, V. Todeschi, S. Beltramino. International Journal of Heat and Technology Vol. 40, No. 1, February, 2022, pp. 23-31

Comparison between ENVI-met and UMEP-SOLWEIG

ENVI-met was compared with UMEP-SOLWEIG to validate this last tool under extreme summer and winter weather conditions, analyzing thermal comfort conditions:


Models	Wind	Ta and RH	Radiative fluxes	Pollutant	Soil	Vegetation	Built environment
ENVI-met	Reynolds- averaged non- hydrostatic Navier- Stokes equations	Determined by the different sources and sinks of sensible heat and vapor in the model	Radiation fluxes (avg) consider shading, reflections, building materials, and the effect of vegetation	Pollutant dispersion model is developed by ENVI- met	The heat conductivity considers the soil water content (Darcy's law). A 3D root model calculates water extraction from the soil	All plants are treated solving the energy balance of the leaf surface	Complex buildings can be constructed with no limitations, represented by a thermodynamical model of 7 prognostic calculation nodes
UMEP- SOLWEIG	Hourly weather data	Hourly weather data	Diffuse and direct solar radiation calculation from the global radiation using the approach	Not calculated	Grass and natural surfaces have been parameterized considering the DSM	<i>Tveg</i> is equal to <i>Ta</i> ; shortwave and longwave transmission is taken from literature.	Derived from DSM of buildings and ground

Results and discussion

Comparison between SOLWEIG and ENVI-met for two neighborhoods

Neighborhoods	Arquata	Mediterraneo
Building density (BD) [m ³ /m ²]	3.56	6.96
Height-to-width ratio (H/W) [m/m]	0.27	0.62
Asphalt [%]	43.50	49.72
Grass [%]	10.31	8.08
Buildings [%]	19.44	17.32

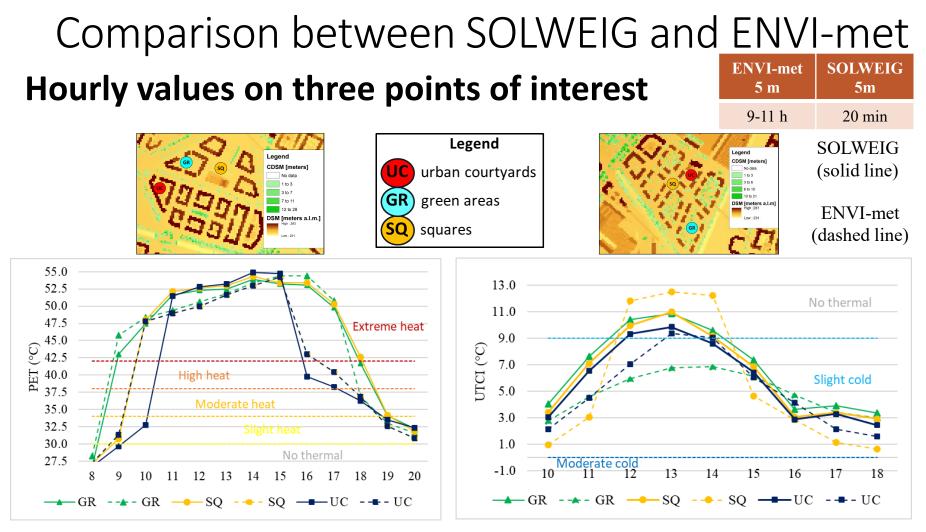
1. Average daily values on three points of interest

2. Hourly values on three points of interest

3. Spatial analysis

4. City-scale analysis

Comparison between SOLWEIG and ENVI-met

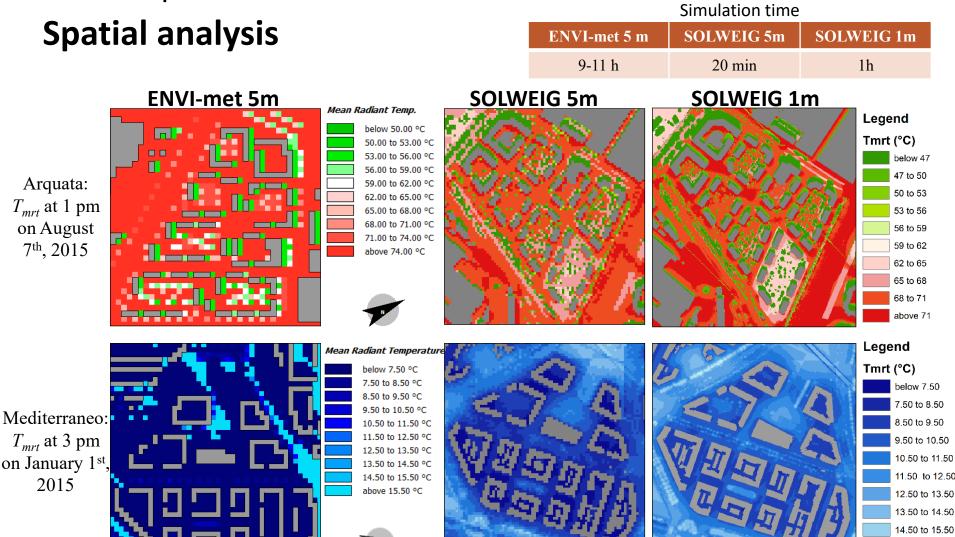

Average daily values on three points of interest

The average values of PET and UTCI for August 7th, 2015 (8 am - 8 pm) and for January 1st (10 am - 6 pm) are shown.

	PET (°C) Sum		mer UTCI (°C)		PET (°C)			inter <i>UTCI</i> (°C)				
Mediterraneo	GR	SQ	UC	GR	SQ	UC	GR	SQ	UC	GR	SQ	UC
ENVI-met	45.29	44.70	42.14	39.77	39.00	38.54	2.12	2.46	1.99	4.78	5.35	4.07
SOLWEIG	45.51	44.90	41.27	39.31	39.01	37.27	2.42	3.09	1.89	5.72	6.40	5.14
Arquata	GR	SQ	UC	GR	SQ	UC	GR	SQ	UC	GR	SQ	UC
ENVI-met	42.24	45.57	44.61	39.05	41.08	36.88	2.98	2.50	2.59	4.92	5.55	5.02
SOLWEIG	40.45	44.72	43.86	36.97	38.94	38.52	3.46	2.98	2.55	6.78	6.28	5.83

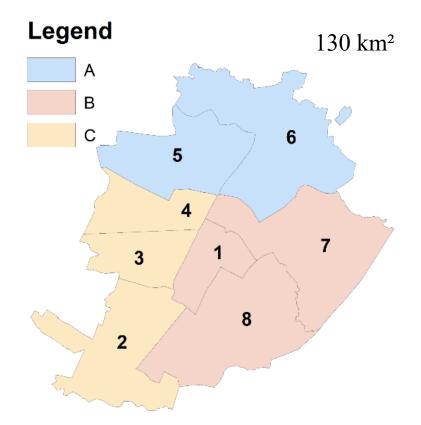
PET (°C) UTCI (°C) PET (°C) **Stress Category** UTCI (°C) **Stress Category** Stress Category **Stress Category** Under 4 over 41 extreme heat stress 38 to 46 very strong heat stress high cold 9 to 0 slight cold stress strong heat stress 35 to 41 32 to 38 strong heat stress

The **mean relative absolute error (MRAE)** varies in summer from **0.03 to 5.34** % and in winter from **1.63 to 37.76%** and the main errors can be observed in wintertime and with UTCI (i.e., **MRAEavg = 22%**).



PET in Mediterraneo on August 7th, 2015.

UTCI in Arquata on January 1st, 2015.

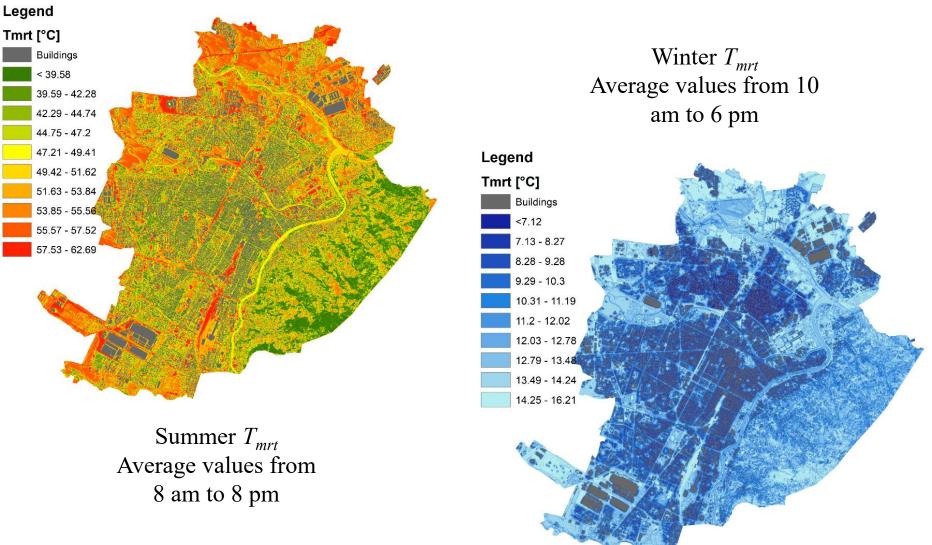

The results presents **similar trends** emphasizing the reliability of SOLWEIG.

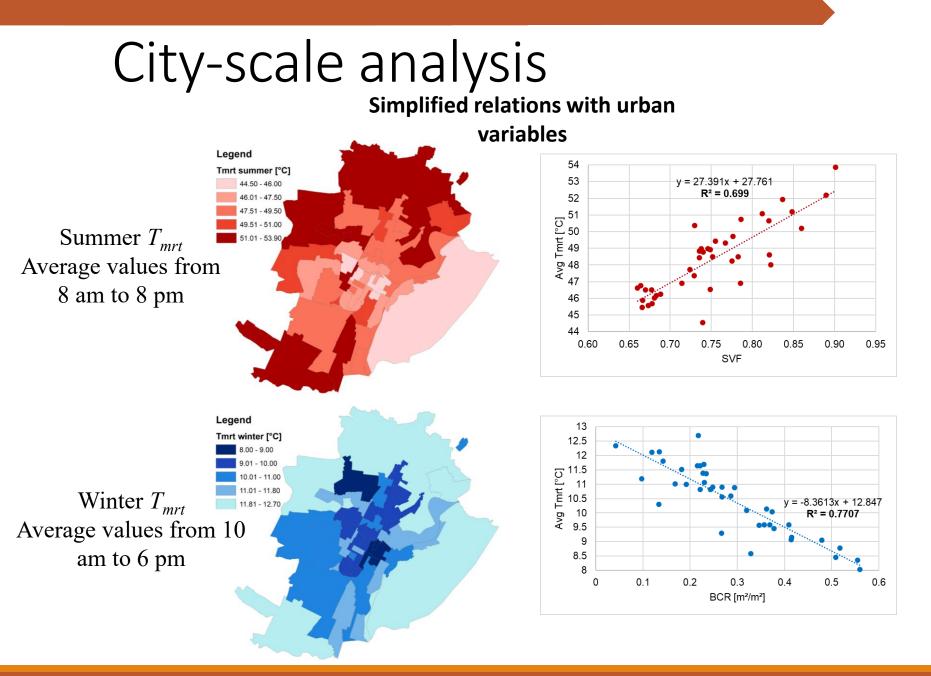
Comparison between SOLWEIG and ENVI-met

7th AIGE/IIETA International Conference and 16th AIGE 2022 Conference *Parma, June 8 – 9, 2022* above 15.50

City-scale analysis

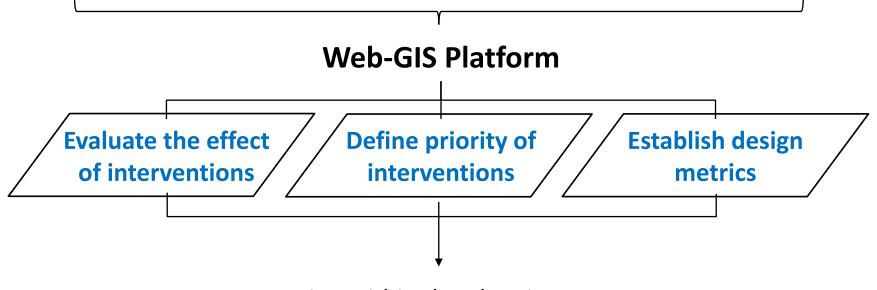
Area dimensions


Group	Width	Height	Cell size
А	2210	1353	2.990.130
В	2197	1720	3.778.840
С	1593	2073	3.302.289


Simulation time SVF and *Tmrt*

Group	Summer (h)	Winter (h)
Α	9.32	10.54
В	12.19	11.43
С	12.37	11.17

Total simulation time: 67 hours


City-scale analysis

Future works

- Evaluation of outdoor thermal comfort indexes (PET and UTCI) spatially by implementing new models
- Evaluation of scenarios to observe the effect of the interventions at the urban scale (e.g., increase in greenery, change in climatic conditions such as rising temperatures)

Integration within the planning process.

Conclusion

Comparison between SOLWEIG and ENVI-met:

- □ Since it offers the **best compromise between simulation time and accuracy**, we found that **SOLWEIG** seems to be more suitable, especially for assessment and analyses at the **urban scale**, to assess the overall impact of interventions for the sustainable development of the urban environment.
- □ ENVI-met is more useful for feasibility studies with high spatial and temporal resolution, or for the pre-design phase of neighbourhoods.

These results show a good similarity between ENVI-met and SOLWEIG; SOLWEIG has a **good quality of accuracy** despite the simplified assumptions used in the computational models. However, some limitations are noteworthy: **forced meteorological data limit the accuracy**, especially in winter conditions and with UTCI index.

Thanks for your attention!

simone.beltramino@polito.it

7th AIGE/IIETA International Conference and 16th AIGE 2022 Conference *Parma, June 8th – 9th, 2022*